
RapidChain: Scaling
Blockchain via Full Sharding

Presented By:
Ramesh Adhikari, Graduate Research Assistant

School of Computer and Cyber Sciences, Augusta University

20th September, 2022

Outline

• Problem in Blockchain (Motivation for this paper)
• Sharding
• RapidChain
• RapidChain Protocols
• Evaluation
• Conclusion

1

Problem with Blockchain
(Motivation for this paper)

• Performance and Scalability
– Blockchain requires all participants

to agree on the validity of
transactions

– Hence every node must store all
transactions

– Scalability reduces with the rise in
decentralization

– As the number of nodes increase,
the longer it takes for a transaction
to be propagated and consensus to
be achieved the more it degrades
the overall performance

2

Solution: use Sharding
Concept of DB Sharding

3

Sharding in Blockchain
• Sharding is to split the

overheads of processing
transactions among multiple,
smaller groups of nodes.

• These groups work in
parallel to maximize
performance

• Goal for a sharded network
is to be able to process
transactions with quick
enough decision by reducing
computing and storage
redundancies

4

Rapidchain

• Sharding-based public blockchain protocol
• Partitions the set of nodes into multiple smaller groups

of nodes called committees (or shards)
• Committees operate in parallel on disjoint blocks of

transactions and maintain disjoint ledgers
• Aiming on full sharding i.e. on communication,

computation and storage

5

Rapidchain Protocol
• Bootstrapping: Create Root Group and Establishing a

reference committee
• Consensus: Gossip the block, then agree on the hash

of the block
• Reconfiguration: allows new nodes to establish

identities and join the existing committees

6

Bootstrapping
• To create Root Group, election

network is constructed bipartite graph
• Initially n nodes are in L1 and every

node is assigned to set of groups R1

• Each group runs a subgroup election
protocol to select a random subset of
its members.

• Elected members will then serve as
nodes in L2

• To construct the election network, we
set |Li| = |Li-1|αi +βiγi and |Ri| = |Li|αi

where |L1| = n, |R1| = nαi , 0<αi,βi,γi< 1,
and i = {2, ..., ℓ}

7

Bootstrapping contd
• Running subgroup election protocol

– Members of each group run distributed
random generator(DRG) to generate
random string s

– Each node with identification ID compute
h=H(s||ID) and announces itself elected if
h<=2256-e , where H is hash function, in
practice set e=2.

– All nodes sign the (ID,s) of e elected nodes
who have the smallest h and gossip their
signatures in group as a proof of election for
the elected node.

– This process continues to last sampler
graphs

8

Bootstrapping Contd..
• Reference Committee formation

– Root group generates and distributes a sequence of
random bits that are in turn used to establish
a reference committee of size O (log n)

• Establish Committees
– Reference committee then creates K committees

(Shard)
– The bootstrap phase runs only once at the start of

RapidChain

9

Rapidchain contd…

• Let n denote the number of participants in the protocol
at any given time

• m ≪ n denote the size of each committee
• It creates k = n/m committees each of size m = c log n

nodes, E.g. with 1,000 nodes we’ll have around 17
committees of 60 nodes each

• where c is a constant depending only on the security
parameter (in practice, c is roughly 20)

10

Consensus within committees

• Idea: Gossip the block, then agree on the hash of the
block

• Consists of two parts:
– A gossiping protocol to propagate the messages

(such as transactions and blocks) within a committee
– A synchronous consensus protocol to agree on the

header of the block

11

Gossiping Large Blocks

• Information dispersal algorithm (IDA)
– Encode message (M) into k chunks M1, M2, . . . ,

Mk using an erasure coding mechanism
– Give each neighbor k/d chunks (d is no. of

neighbors)
– The message can be reconstructed from any set

of (1 − φ)κ valid chunks. (φ is fraction of corrupt
neighbors)

12

Consensus Protocol
• Each committee picks a leader

randomly using the epoch
randomness

• The leader gathers all the
transactions it has received
(from users or other committees)
in a Block

• Leader gossips the block using
IDA-gossip and creates the
block header Hi that contains the
iteration number as well as the
root of the Merkle tree from IDA-
Gossip.

13

Inter-Committee Routing
• Kademlia routing algorithm
• Each committee maintains

a routing table of log n
records that point to log n
different committees

• Committee C0 wants to
locate committee C7 (via
C4 and C6) responsible for
transactions with prefix
0x111.

14

How Transaction process

15

Why Reconfiguration?

• Join/Leave attacks: Corrupt nodes could rejoin the
network to take control of a committee.
– Cuckoo rule

• Malicious nodes can corrupt the good nodes
– POW

16

Reconfiguration
• Every committee gets new block with updated members
• Offline PoW

– In each epoch, every node that wants to join or stay in
the protocol must solve a PoW puzzle during 10 minute.

– Reference committee is responsible to verify PoW result
• Cuckoo Rule

– Randomly assign new node
– Assign a number of members in the committee to

another committee

17

Cuckoo Rule
• New node assigned a random

shard
• Move k nodes from the shard,

not including the new node
• Assign these k nodes to another

committee
• New node needs to download

only the set of unspent
transactions (UTXOs) from that
committee

18

Evaluation

19

Conclusion

• Byzantine faults from up to 1/3 of its participants
• Achieve 7,300 tx/sec in a network of 4,000 nodes
• Fast gossip of large messages
• Sharding with storage, communication, computation

20

Thank you!

