
Fast Scheduling in Distributed Transactional Memory

Costas Busch Maurice Herlihy Miroslav Popovic
Gokarna Sharma

Presented by
Ramesh Adhikari

Graduate Research Assistant
School of Computer and Cyber Sciences, Augusta University

December, 2022

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 1 / 16



Table of Contents

1 Introduction

2 Graph Model

3 Greedy Schedule
Line Graph
Grid Graph
Cluster Graph
Star Graph

4 Conclusion

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 2 / 16



Table of Contents

1 Introduction

2 Graph Model

3 Greedy Schedule
Line Graph
Grid Graph
Cluster Graph
Star Graph

4 Conclusion

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 3 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock

Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion

Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions

Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions

Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically

Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures

abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Concurrent processes (threads) need to synchronize to avoid
introducing inconsistencies in shared data objects.

Traditional synchronization mechanisms such as locks and barriers
have well-known limitations.

Deadlock
Priority inversion
Reliance on programmer conventions
Vulnerability to Failure or Delay

Solution (Transactional memory)

Using TM, code is split into transactions
Sequence of Reads and Writes on shared variable execute atomically
Commit transaction: In the absence of conflicts or failures
abort transaction: Incase of synchronization conflicts or failures

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 4 / 16



Introduction

Paper considers a data-flow of transaction execution

Each transaction executes at a single node, but data objects are
mobile.

A transaction initially requests the objects it needs and executes only
after it has assembled them

After the transaction commits, it releases its objects, possibly
forwarding them to other waiting transactions

In a distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of a
transaction scheduling algorithm (sometimes called contention
management) is to minimize delays caused by data conflicts and data
movement.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 5 / 16



Introduction

Paper considers a data-flow of transaction execution

Each transaction executes at a single node, but data objects are
mobile.

A transaction initially requests the objects it needs and executes only
after it has assembled them

After the transaction commits, it releases its objects, possibly
forwarding them to other waiting transactions

In a distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of a
transaction scheduling algorithm (sometimes called contention
management) is to minimize delays caused by data conflicts and data
movement.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 5 / 16



Introduction

Paper considers a data-flow of transaction execution

Each transaction executes at a single node, but data objects are
mobile.

A transaction initially requests the objects it needs and executes only
after it has assembled them

After the transaction commits, it releases its objects, possibly
forwarding them to other waiting transactions

In a distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of a
transaction scheduling algorithm (sometimes called contention
management) is to minimize delays caused by data conflicts and data
movement.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 5 / 16



Introduction

Paper considers a data-flow of transaction execution

Each transaction executes at a single node, but data objects are
mobile.

A transaction initially requests the objects it needs and executes only
after it has assembled them

After the transaction commits, it releases its objects, possibly
forwarding them to other waiting transactions

In a distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of a
transaction scheduling algorithm (sometimes called contention
management) is to minimize delays caused by data conflicts and data
movement.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 5 / 16



Introduction

Paper considers a data-flow of transaction execution

Each transaction executes at a single node, but data objects are
mobile.

A transaction initially requests the objects it needs and executes only
after it has assembled them

After the transaction commits, it releases its objects, possibly
forwarding them to other waiting transactions

In a distributed TM, execution time is dominated by the costs of
moving objects from one transaction to another. The goal of a
transaction scheduling algorithm (sometimes called contention
management) is to minimize delays caused by data conflicts and data
movement.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 5 / 16



Table of Contents

1 Introduction

2 Graph Model

3 Greedy Schedule
Line Graph
Grid Graph
Cluster Graph
Star Graph

4 Conclusion

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 6 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes

it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects

it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Graph Model

The network is modeled as a weighted graph G, where transactions
reside at nodes

Edges are communication links, and edge weights are communication
delays.

At any time step, a node may perform three actions:

it may receive objects from adjacent nodes
it executes any transaction that has assembled its required objects
it may forward objects to adjacent nodes.

A Transaction’s execution terminates when it commits.

Paper provided offline algorithms to compute conflict-free schedules.

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 7 / 16



Table of Contents

1 Introduction

2 Graph Model

3 Greedy Schedule
Line Graph
Grid Graph
Cluster Graph
Star Graph

4 Conclusion

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 8 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph
Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph
Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph
Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph
Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph

Grid Graph
Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph

Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph
Cluster Graph

Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Greedy Schedule

Use dependency graph

Pick the transaction and assign valid color i.e. execution time

Repeat until all transactions(nodes) are colored

Each color is a separate time step

Apply this greedy schedule to

Line Graph
Grid Graph
Cluster Graph
Star Graph

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 9 / 16



Line Graph

Each node has a transaction of any node of objects

L be the longest shortest walk of any object

Authors schedule the transactions in two phases

first phase execute the transactions in S1 And in the second phase
execute the transactions in S2.

Total time: O(L)

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 10 / 16



Grid Graph

Each transaction requests a uniformly random set of k objects (out of
w)

nxn nodes and w objects and decompose graph into sub-grids

Execute each sub-grid one after another

In every sub-grid apply greedy schedule

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 11 / 16



Cluster Graph

Each transaction requests k arbitrary objects (out of w)

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 12 / 16



Star Graph

Each transaction requests k arbitrary objects (out of w)

Divide star into rings

Treat each ring as a cluster graph

Apply the line algorithm for each ray cluster

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 13 / 16



Table of Contents

1 Introduction

2 Graph Model

3 Greedy Schedule
Line Graph
Grid Graph
Cluster Graph
Star Graph

4 Conclusion

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 14 / 16



Conclusion

Paper discussed the data-flow model in Transactional Memory

Paper presented efficient schedules for many network typologies

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 15 / 16



Thank You!

Transactional Memory Fast Scheduling in Distributed Transactional MemoryAugusta University 2022 16 / 16


	Introduction
	Graph Model
	Greedy Schedule
	Line Graph
	Grid Graph
	Cluster Graph
	Star Graph

	Conclusion

