ByShard: Sharding in a
Byzantine Environment

Presented By:
Ramesh Adhikari, Graduate Research Assistant
School of Computer and Cyber Sciences, Augusta University

September, 2022

Outline

* Motivation for this paper
e Used Protocol

 Main ldea

* Proposed Model

« Evaluation

Motivation for this paper

* Development of resilient system than can
due to : ,
« Current Sharded resilient system do not provide the

* To proposed High-Performance Resilient system

Used Protocol

Used two traditional sharded database concept efficiently
in Byzantine environment

Atomicity; atomic decision on
whether the transaction can be committed or not:

|solation; provide concurrency
control

Two Phase Commit

€& =
- Transaction
Client Coordiastos Shard A Shard B

Credit Txn | Debit Txn
execution execution

3 Transaction
Client Conrdinator Shard A Shard B

| |

Credit Txn Debit Txn
execution execution

Commit Commit
s Request B <y

e Commit

Request
" Commit

——

\\

Commit Txn after receiving OK from both the servers Rollback the transaction in case of failure

Two Phase Locking (Serializability)

T1
Write Lock for A

Write Lock for B

Update A=A+1
Update B=B+2
Unlock A
Unlock B
Write Lock on A

Write Lock on B
Update A=A*2
Update B=B*4

Unlock A
Unlock B

Sharded Design

System
(All Data)

Ri «<——> R
A A

Y Y
R3 «—> Ry

A

Requests
(All Data)

Requests
(African Data)

\J

Fi «—————> Fy
A A

Y Y
F3 «—> F4

(African Data)

(Asian Data)

S] «<—> S
A A

Y Y
S3 «—> Sy

A
Requests

(Asian Data)

A
Requests
(Mixed Data)

Requests
(American Data)

\J

M| «<—> My
A A

Y Y
M3 «<—> My

(American Data)

(European Data)

E; «<—> E
A A

Y \J
E3 «—> E4

A
Requests

(European Data)

Main Idea

* Orchestrate-execution model (OEM) in

. Replication of transactions among all involved
shards and , used

model: Execution of transactions by maintaining
among shards;

* Uses cluster-sending communication
— Particular algorithm unspecified
 Uses consensus abstraction as a Blackbox

Communication in Shard

protocol is used for reliable communication
between clusters S; and S,; To send S, value v to S,. Provide

the following guarantees

— S, can send v to S, only if there is agreement on sending v
among the non-faulty replicas in S;;

— all non-faulty replicas in S, will receive the value v; and
— all non-faulty replicas in S, obtain confirmation of receipt.

Orchestrate-execution model (OEM)

down into three types of shard-steps

. Shard (S) to determine whether
S votes for either or . And can make local changes,
e.g., check conditions, modify local data or

. Shard performs necessary operations to
when transactions is . E.g., Modify data and

. Shard performs necessary operations to roll-back
transactions when transactions is . E.g., roll -back local
changes,

Orchestration

« The main goal of it is to the transactions (Tx)
to and obtained the
decision

* Three type of model
— Linear (based on Linear 2PC)

— Centralized (based on 2PC)
— Decentralized

Orchestration - Linear

* Vote Step: Sequence

* Decide: Centralized

 Commit or Abort: Parallel

* Advantage: Early abort

« S1,82S3 and S* are vote-steps

« S2,S°and S® have commit steps

Vote Commit

* Every dot represents a single
consensus step

« Every arrow a single cluster
sending step

Orchestration - Centralized

« Root/Coordinator is selected for Centralized
each Tx independently

* Vote Step: Parallel
« Decide: Centralized
e Commit or Abort: Parallel

« Disadvantage: Wait for all

mess ag e Root Vote Vote Decide Commit

Orchestration - Decentralized

* Vote Step: Parallel Distributed
 Decide: Decentralized
e Commit or Abort: Parallel

* (Can be performed in 3 consecutive
steps

* \ote aggregation is performed in a
Single Step as We” Root Vote Vote Commit

Execution Model

« Execution part consider the
— The above orchestrations

IS proposed to cope with that
— A Tx is split to Constraint and Modification steps

Execution-Isolation free execution

* If S has a condition — update is made in the vote step
« Abort steps are generated for all such modification

If S has no condition — modifications are made in the
commit step, no abort step needed

Disadvantage- Dirty read are possible

A | $100 s A | $500
B | $300 =S| 7B 76300
CON('A,IOO)

E | %0 Mon(Aa00) | £ | %0

Execution — Lock-based execution

« Read/Write locks are used
 Modes:
— Read uncommitted :

— Read Committed : but reads the
same row twice and gets a different value each time

— Serializable: read and write locks are used in a usual
way; data consistency; isolation

Example of the OEM

Shard accounts by first letter of name

Representations: 7 is transaction; ¢ Is shard-step;

e T="f has $500 and Bo has $200, then move $400 from to Bo.

« o1 ="LOCK(Ana); if has $500, then forward ¢2 to Sb (Commit vote)
else RELEASE(Ana) (Abort vote)”

« 02 ="“LOCK(Bo); if Bo has $200, then add $400 to Bo; RELESE(Bo);
and forward o3 to Sa (Commit)

else RELEASE(Bo) and forward 04 to Sa (Abort)”

¢ 03 = "“remove $400 from Commit T and RELEASE()”
04 ="Abort Tt and RELEASE()’

vote-step vote-step commit-step

vote commit committ
ocratS, ——m8M8MM > g atSy, ———————— > gz at S,

‘—> o4 at S,

abort T

abort-step

Evaluation

 Consensus steps were abstracted in evaluations
 Experiment done on 5000 Tx

« Tx affects 16 accounts, 8 accounts have constrained
64 Shards

« 8k accounts

« Scalability increases with number shards while
keeping other parameters constant.

Thank you!

