
ByShard: Sharding in a
Byzantine Environment

Presented By:
Ramesh Adhikari, Graduate Research Assistant

School of Computer and Cyber Sciences, Augusta University

September, 2022

Outline

• Motivation for this paper
• Used Protocol
• Main Idea
• Proposed Model
• Evaluation

1

Motivation for this paper

• Development of resilient system than can handle Byzantine
failure due to Crashes, Bugs, Malicious behaviors

• Current Sharded resilient system do not provide the flexibility of
traditional data management system

• To proposed High-Performance Resilient system

2

Used Protocol

Used two traditional sharded database concept efficiently
in Byzantine environment
• Two-phase commit: Atomicity; atomic decision on

whether the transaction can be committed or not;
• Two-phase locking: Isolation; provide concurrency

control

3

Two Phase Commit

4

Two Phase Locking (Serializability)

5

Sharded Design

6

Main Idea
• Orchestrate-execution model (OEM) in Byzantine environment

– Orchestration: Replication of transactions among all involved
shards and reaching on atomic decision; used two-phase commit

– Execution model: Execution of transactions by maintaining data
consistency among shards; used two-phase locking

• Uses cluster-sending communication
– Particular algorithm unspecified

• Uses consensus abstraction as a Blackbox

7

Communication in Shard
• Cluster-sending protocol is used for reliable communication

between clusters S1 and S2; To send S1 value 𝑣 to S2; Provide
the following guarantees
– S1 can send 𝑣 to S2 only if there is agreement on sending 𝑣

among the non-faulty replicas in S1;
– all non-faulty replicas in S2 will receive the value 𝑣; and
– all non-faulty replicas in S1 obtain confirmation of receipt.

8

Orchestrate-execution model (OEM)
• Processing is broken down into three types of shard-steps

– Vote-step: Shard (S) Verifies the constraints to determine whether
S votes for either commit or abort. And can make local changes,
e.g., check conditions, modify local data or acquire locks

– Commit-step: Shard performs necessary operations to finalize
transactions when transactions is committed. E.g., Modify data and
release locks

– Abort-step: Shard performs necessary operations to roll-back
transactions when transactions is aborted. E.g., roll -back local
changes, release locks

9

Orchestration

• The main goal of it is to replicate the transactions (Tx)
to involved shard and obtained the commit/abort
decision

• Three type of model
– Linear (based on Linear 2PC)
– Centralized (based on 2PC)
– Decentralized

10

Orchestration - Linear

• Vote Step: Sequence
• Decide: Centralized
• Commit or Abort: Parallel
• Advantage: Early abort
• S1,S2,S3 and S4 are vote-steps
• S2,S5 and S6 have commit steps
• Every dot represents a single

consensus step
• Every arrow a single cluster

sending step

11

Orchestration - Centralized

• Root/Coordinator is selected for
each Tx independently

• Vote Step: Parallel
• Decide: Centralized
• Commit or Abort: Parallel
• Disadvantage: Wait for all

message

12

Orchestration - Decentralized

• Vote Step: Parallel
• Decide: Decentralized
• Commit or Abort: Parallel
• Can be performed in 3 consecutive

steps
• Vote aggregation is performed in a

single step as well

13

Execution Model

• Execution part consider the isolation
– The above orchestrations allow to read uncommitted

data
– Two-phase locking is proposed to cope with that
– A Tx is split to Constraint and Modification steps

14

Execution-Isolation free execution

• If S has a condition – update is made in the vote step
• Abort steps are generated for all such modification
• If S has no condition – modifications are made in the

commit step, no abort step needed
• Disadvantage- Dirty read are possible

15

Execution – Lock-based execution

• Read/Write locks are used
• Modes:

– Read uncommitted : Dirty Read
– Read Committed : avoid a dirty read, but reads the

same row twice and gets a different value each time
– Serializable: read and write locks are used in a usual

way; Two Phase Locking; data consistency; isolation

16

Example of the OEM
Shard accounts by first letter of name
Representations: 𝜏 is transaction; 𝜎 is shard-step;
• 𝜏 = “if Ana has $500 and Bo has $200, then move $400 from Ana to Bo.
• 𝜎1 = “LOCK(Ana); if Ana has $500, then forward 𝜎2 to Sb (Commit vote)

else RELEASE(Ana) (Abort vote)”
• 𝜎2 = “LOCK(Bo); if Bo has $200, then add $400 to Bo; RELESE(Bo);

and forward 𝜎3 to Sa (Commit)
else RELEASE(Bo) and forward 𝜎4 to Sa (Abort)”

• 𝜎3 = “remove $400 from Ana, Commit 𝜏 and RELEASE(Ana)”
• 𝜎4 = “Abort 𝜏 and RELEASE(Ana)”

17

Evaluation

• Consensus steps were abstracted in evaluations
• Experiment done on 5000 Tx
• Tx affects 16 accounts, 8 accounts have constrained
• 64 Shards
• 8k accounts
• Scalability increases with number shards while

keeping other parameters constant.

18

Thank you!

